Structured cabling design and installation is governed by a set of standards that specify wiring data centers, offices, and apartment buildings for data or voice communications using various kinds of cable, most commonly category 5e (CAT-5e), category 6 (CAT-6), and fibre optic cabling and modular connectors. These standards define how to lay the cabling in various topologies in order to meet the needs of the customer, typically using a central patch panel (which is normally 19 inch rack-mounted), from where each modular connection can be used as needed. Each outlet is then patched into a network switch (normally also rack-mounted) for network use or into an IP or PBX (private branch exchange) telephone system patch panel.
Although each site is different, and care must be taken to account for special needs if they exist, for the most part these standards conform to ANSI TIA/EIA-568-B documents. There are some additional requirements, and, in some cases, minor exceptions to the published TIA/EIA standards.
- Desktop / Server / Storage Virtualization
- Private Cloud system
- Hybrid Could system (Public & Private Cloud computing for enterprises)
Cloud computing is the delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). Clouds can be classified as public, private or hybrid.
Cloud computing is the result of evolution and adoption of existing technologies and paradigms. The goal of cloud computing is to allow users to take benefit from all of these technologies, without the need for deep knowledge about or expertise with each one of them. The cloud aims to cut costs, and help the users focus on their core business instead of being impeded by IT obstacles.
Autonomic computing automates the process through which the user can provision resources on-demand. By minimizing user involvement, automation speeds up the process, reduces labor costs and reduces the possibility of human errors.
Users routinely face difficult business problems. Cloud computing adopts concepts from Service-oriented Architecture (SOA) that can help the user break these problems into services that can be integrated to provide a solution. Cloud computing provides all of its resources as services, and makes use of the well-established standards and best practices gained in the domain of SOA to allow global and easy access to cloud services in a standardized way.
Cloud computing also leverages concepts from utility computing in order to provide metrics for the services used. Such metrics are at the core of the public cloud pay-per-use models. In addition, measured services are essential parts of the feedback loop in autonomic computing, allowing services to scale on-demand and to perform automatic failure recovery.